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Structural and flow properties of binary media generated by fractional Brownian motion models

E. S. Kikkinides* and V. N. Burganos†

Institute of Chemical Engineering and High Temperature Chemical Processes, P.O. Box 1414, GR 265 00 Patras, Greec
~Received 9 November 1998!

In the present paper, the structural and flow properties of binary media generated by two-dimensional lattices
that follow fractional Brownian motion statistics are studied. A modification of the midpoint displacement and
random addition method is employed in order to generate multicell binary media with sizes that are consider-
ably larger than the correlation length of the medium. Several structural properties, such as the autocorrelation
function, the surface area, and the percolation threshold, are studied for different values of porosity and degree
of correlation. In addition, transport properties are investigated in the above media, by solving numerically the
momentum and continuity equations, to determine the absolute permeability of the medium in directions
parallel and normal to the fractional Brownian motion~fBm! plane. It is found that multicell fBm porous media
possess very interesting structural properties that are functions of the Hurst exponent and porosity, and are
independent of the lattice size, in contrast to the traditional single-cell fBm media. In addition, they exhibit
stronger structural correlation, lower specific surface area, higher percolation threshold, and lower permeabili-
ties than those of the corresponding single-cell porous media.@S1063-651X~99!01506-8#

PACS number~s!: 02.70.2c, 47.55.Mh, 47.53.1n, 05.40.2a
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I. INTRODUCTION

Transport in porous media is a central issue in many te
nological applications including filtration, waste treatme
enhanced oil recovery, etc. The prediction of the permea
ity of a porous medium is a problem of great practical int
est, since it provides an effective measure of the performa
of the medium under the action of inherent or externa
applied pressure gradients. In determining the permeab
of a real porous medium two major problems are typica
encountered: the difficulty to represent accurately the p
structure and the difficulty to calculate accurately the fl
field within the complex geometry of the structure by solvi
the corresponding transport equations.

The evolution of the modeling approaches to the ab
problem over the last three decades, from the simplified
models@1# to the more sophisticated, yet still limited, ne
work models~for a review see Bryant, Mellor, and Cade@2#!,
is a result of advances in theory and experimental techniq
as well as in computational power. A third class of mod
involves the direct solution of the transport equations in
consolidated@3# or consolidated@4–7# arrays of solid objects
arranged in random or self-similar configurations. Recen
Adler, Jacquin, and Quiblier@8#, Ioannidis and co-workers
@9,10# and Yaoet al. @11#, have used reconstructions fro
serial thin sections of actual porous media and solved
transport equations to determine their transport proper
The reconstructed media are, essentially, binary matrices
result from a fine discretization and digitization of the actu
porous medium. This class of models provides more dir
estimates of the permeability and the formation factor th
the first two classes, provided a detailed series of sufficie
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large thin sections is available that will eliminate certa
weaknesses of the stochastic reconstruction procedure.

The concept of correlated pore structure is relevant
most practical porous materials, especially in geological m
dia which, owing to their long formation history through th
centuries, are likely to have developed strong correlation
structural elements. It has been recently realized that m
natural porous media and aquifers exhibit long-range co
lations @12#, which are responsible for the unusual transp
and percolation characteristics compared to those of di
dered media with short-range correlations, or even of rand
media@13,14#. A special class of long-range correlations
the one obeying the statistics of fractional Brownian moti
~fBm! @15#. This property appears to characterize many na
ral systems@16#, with a special emphasis on heterogeneo
porous media, in terms of surface morphology@17,18#, crack
propagation@19#, or even distribution of permeabilities in o
reservoirs@12#. Furthermore, many engineering applicatio
in porous media can be described by fBm statistics, nam
pressure fluctuations in a bubble column@20#, solid-liquid
fluidized beds@21,22#, saturation profiles in slow drainage i
porous media@23,24#, three-phase relative permeability i
heterogeneous media@25#, etc.

In all previous studies, fBm statistics have been employ
to simulate the local conductivity variation and to expla
unusual transport and/or percolation behavior of actual
rous media. Among the objectives of the present paper i
demonstrate the applicability of fBm construction techniqu
to the simulation of porous media based on experiment
measured properties of two-dimensional~2D! images, such
as porosity and autocorrelation function. To this end, a th
ough study of several basic structural properties of fB
generated media is presented. The generated sections o
porous medium are square lattices made of square elem
occupying solid or liquid phase according to an fBm dist
bution. For the first time, pore structures that follow fB
statistics with size considerably larger than the basic fB
correlation length, are constructed. These multicell media
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7186 PRE 59E. S. KIKKINIDES AND V. N. BURGANOS
shown to exhibit interesting structural properties that are
dependent of the overall lattice size, in contrast to traditio
fBm media. A numerical study of the correlation properti
of fBm generated single-cell and multicell binary media
conducted that involves the calculation of the autocorrela
function for different degrees of correlation by varying t
value of the Hurst exponent. Specific surface area and
colation properties of such media are also determined
different degrees of correlation. Finally, the Stokes equa
coupled with the continuity equation are solved and the
agonal terms of the permeability tensor are determined
different porosities and degrees of spatial correlation.

II. CONSTRUCTION OF A BINARY MEDIUM

Consider the image of a 2D section of a porous mediu
Using standard techniques@26#, this section can be describe
by a 2D matrix of binary pixels, which take the values of
and 1 in the solid and pore phases, respectively. The p
function of the medium is then defined as follows:

Z~x!5H 1 if x belongs to the pore space

0 otherwise,
~1!

wherex is the position vector from an aribitrary origin.
The porosity« and the normalized autocorrelation fun

tion Rz(u) can be defined by the statistical averages@8,26#,

«5^Z~x!&, ~2a!

Rz~u!5
^„Z~x!2«…„Z~x1u!2«…&

«2«2
. ~2b!

Note that^•& indicates spatial average. For an isotropic m
dium, Rz(u) becomes one-dimensional as it is a function
u5uuu only @8#. Ideally, a representative reconstruction o
medium in three dimensions should have the same corr
tion properties as those measured on a single t
dimensional section, expressed by the various moment
the phase function. In practice, matching of the first t
moments, that is, porosity and autocorrelation function,
been customarily pursued. Following the original work
Joshi @27# and the refinements suggested by Quiblier@28#
and Adler, Jacquin, and Quiblier@8#, one can generate th
discrete phase functionZ(x) starting from a Gaussian fiel
X(x), which, subsequently, is passed through a linear an
nonlinear filter to produce binary matrices, with the first tw
moments of the phase function matching those of a sin
section. The above procedure can be quite tedious for rou
applications, while in its present state it suffers from seve
limitations @29#.

III. GENERATION OF A BINARY MEDIUM FOLLOWING
FBM STATISTICS

Consider a 2D lattice with sites that follow fBm statistic
Following Mandelbrot and Van Ness@15#, one defines frac-
tional Brownian motion,BH(x) as a process that satisfies

^BH~x!2BH~x0!&50, ~3a!

^@BH~x!2BH~x0!#2&5ux2x0u2H, ~3b!
-
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whereH is the Hurst exponent. ForH5 1
2 , one recovers the

regular Brownian motion. ForH.0, fBm entails spatially
growing correlations, whereas for strongly negative values
H the medium becomes random. Excellent reviews regard
the properties of fBm can be found elsewhere@16,30#.

Several variants of fBm have appeared in the literature
the present paper, each site of the 2D lattice is assigne
number that satisfies Eq.~3!, using the method of midpoin
displacement and successive random addition@30,31#. This
method is illustrated schematically in Fig. 1~a!. If the mesh
sizea0 denotes the resolution of the starting 2D grid~type 1!,
one can obtain another square lattice of resolutiona0 /A2 by
adding sites at the centers of all squares. The new lattic
tilted by 45° ~type 2!. Inserting the centers of the new
squares to the starting grid recovers the original orienta
of the lattice but with a resolution ofa0/2 ~type 3!. At each
stage,n11, the newly defined sites are assigned values
result from averaging the values of the closest neighbor
sites and adding random deviates~midpoint displacement!
with variance satisfying

sn11
2 5~ 1

2 !2Hsn
2 . ~4!

The older sites can either retain their original values or
updated by a random addition of deviates with varian
sn11

2 ~successive random addition!. The above procedure
can generate a 2D lattice with sites following fBm statist
@13,30#. In order to transform it to a binary medium of
given porosity« one can simply sort the site values in
one-dimensional array of ascending order and assign
values to the lower part of the array with length (
2«)NxNy and the value of one to the rest, whereNx andNy

FIG. 1. Midpoint displacement in two dimensions. Nodes a
centers of square pixels, to be labeled solid or void.~a! Single-cell
case and~b! multicell case~proposed in this work.!
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are the number of grid points in thex and y directions, re-
spectively. Note that throughout this study, unless otherw
indicated, it is assumed thatNx5Ny5N.

Some realizations of binary media generated by the ab
procedure for different values ofH are shown in Fig. 2. AsH
decreases, the correlation of the structure weakens, switc
from a strongly correlated structure atH50.95 to a poorly
correlated one forH50. Hence, in principle, one can gene
ate binary media of any degree of correlation by appro
ately selecting the value of the Hurst exponentH. However,
it is evident from Fig. 2 that such a construction leads
porous media of size comparable to the correlation len
From a statistical point of view, such media cannot be u
as valid representations of real porous media since they
tain only a limited number of pores in each realization.
remedy this, one must revisit and modify the procedure
generating 2D fBm lattices. This is accomplished in t
present paper in the following fashion: The original lattice
divided into a number of smaller lattices, each of which
decorated according to the standard fBm procedure outl
above using a fixed value ofH. However, grid points at the
boundaries between adjacent sublattices receive contribu
from both neighboring cells during the averaging procedu
Figure 1~b! shows the multicell configuration at the initia
construction step. Boundary sites that are decorated rec
ing contributions from two adjacent cells are denoted bla
for easier identification. Examples of lattices construc
with this technique using various numbers of individual ce
NP while keeping the same values for the porosity and
Hurst exponent, are presented in Fig. 3. It is evident that
above modification can generate lattices with an adjusta
degree of correlation, and sizes that are considerably la
than the correlation length.

FIG. 2. Two-dimensional images constructed by fBm («50.5).
Variation with theH value, keeping the random number genera
seed constant.
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IV. STRUCTURAL PROPERTIES OF BINARY MEDIA
GENERATED BY FBM LATTICES

A. Correlation function

The correlation properties of fBm models applied to co
tinuous variables, such as the local conductivity, have b
determined by several authors using various definitions
correlation functions, semivariograms, etc.@12,32,33#. Since
in the present paper a thresholding technique is used to tr
form a 2D fBm lattice to a binary medium, that is, to
medium that is fully characterized by discrete variables~0/1!,
it will be interesting to calculate and discuss the autocor
lation function of the medium defined by Eq.~2b!. The re-
sults for single-cell fBm lattices for different values ofH,
keeping the porosity constant («50.5), are shown in Fig.
4~a!. The dimensionless distanceu is defined as the ratio o
actual distance measured on the 2D medium and the p
size, that is,u5x/a0. As H decreases, the degree of corre
tion decreases also, in accordance with the observation m
by inspection of the corresponding images in Fig. 2. Furth
more, if the grid size is increased by a factor of 2, wh
keeping the rest of the parameters constant, the corresp
ing correlation degree will also increase. However, since
pixel size of the lattice is also decreased by the same fac
the correlation function plotted in terms of dimensional d
tance ~i.e., in length units!, and not in pixel-number units

r

FIG. 3. Binary media constructed using multiple fBm cel
H50.7, «50.5, andN516.
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(u), will be identical to the one obtained for the origin
lattice. A set of images that follow fBm statistics with«
50.5 andNp51 is shown in Fig. 4~b!. The seed for the
initiation of the random number generator is kept const
for all images, but the grid size is changed by a factor of 2
is clear by simple inspection that increasing the grid s
results in a binary medium of higher resolution, while
correlation properties remain exactly the same.

Similar results are obtained in the case of binary me
generated by the cell interweaving technique presen
above. Figure 5~a! shows the variation of the correlatio
function with the number of cells,Np, used to construct the
medium. Note that the correlation curve undergoes a sig
cant shift to higher values as the number of cells increa
until a sufficient number of cells are reached, beyond wh
the correlation function remains almost unchanged. Nev

FIG. 4. ~a! Effect of the Hurst exponent value on the autocor
lation function of single-cell fBm media.~b! Effect of the lattice
size on the construction of single-cell fBm media, using the sa
random number generator seed.«50.5, Np51, H50.7.
t
It
e

a
d

fi-
s,
h
r-

theless, it is important to stress that proper rescaling
the pixel size in each lattice can merge all the above co
lation curves into a single one, as can be seen in Fig. 5~b!.
This correlation curve is characteristic of the specific va
of H used~0.7!. Use of a differentH value leads to a differ-
ent correlation curve@Fig. 5~b!#, which cannot be forced to
coincide with theH50.7 curve through any pixel-size sca
ing.

The aforementioned procedure can be employed for
reconstruction of real porous media using single cross s
tions of impregnated samples, following a single or dou
pore-casting technique@11#. The pictures of actual section
are digitized with appropriate software to yield binary im
ages and the corresponding 0/1 two-dimensional arrays.
porosity and the autocorrelation function are then determi
in a straightforward manner from Eqs.~2a! and ~2b! using
directly theZ(x) data@Eq. ~1!#. Subsequently, the multicel
fBm technique can be applied to yield images that have
same porosity and the same~or similar! autocorrelation func-
tion as the experimental ones through proper selection of
H, Np, andN values. An illustration of the application of thi

-

e

FIG. 5. ~a! Effect of the number of fBm cells (Np) on the
autocorrelation function, keeping the size of each individual c
constant (N516). H50.7.~b! Autocorrelation function of multicell
fBm media, all constructed withH50.7, using proper pixel-size
scaling. TheH50.3 correlation function cannot be forced to mat
the H50.7 family curves with any linear pixel-size rescaling.
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PRE 59 7189STRUCTURAL AND FLOW PROPERTIES OF BINARY . . .
procedure for a Vosges sandstone sample is shown in F
6~a! and 6~b!. The image that was generated by the multic
fBm method is shown in Fig. 6~a! ~bottom! along with the
digitized image of a physical section of the sample~top! for
the sake of direct comparison. The fBm-generated image
the same porosity as that of the physical section, wherea
autocorrelation function resembles closely the experim
tally measured one@Fig. 6~b!#. A more detailed study of the
applicability of the multicell fBm method to real porous m

FIG. 6. ~a! Binary images of Vosges sandstone sections
tained experimentally~top! and through the multicell fBm method
presented here~bottom!. The analysis is 4823482 and the pixel
size is 2.04mm. «50.154,H50.8, Np525, andN532. ~b! Auto-
correlation function of actual section and fBm-generated image
the Vosges sandstone sample of~a!.
s.
ll

as
its
-

dia would need a three-dimensional extension of the pres
paper, which is currently in progress.

B. Surface area

The calculation of the specific surface area of pixeliz
porous media rests on the identification and counting of
actual solid faces of the unit elements, that is, of the so
faces that make up the void-solid interface. An analytic
expression is available for the fully random case only, whi
is derived rigorously by Burganos@34#, for three dimensional
~3D! media. It is straightforward to show that this expressi
is generalized to

Sn random5
2 d«~12«!

a
; d51,2,3 ~5!

whered is the dimensionality of the random process anda is
the pixel size. Although the porous medium is, naturally,
3D body, the valued52 must be used here as the constru
tion procedure applies to the cross section only and the m
dium is invariant in the third direction. For correlated medi
the specific surface area can also be determined from
slope of the autocorrelation function atu50 @35#:

Sn524~«2«2!Rz8~0!. ~6!

The results for the dimensionless specific surface a
(Sna)0 of porous media constructed by the aforemention
midpoint displacement and successive random addit
method are shown in Fig. 7 for single working cells (Np
51). Subscript 0 is used to denote single-cell quantities.
log-log scale, the resulting curves are almost linear, w
slopes equal to2H to a good approximation. Note that th
fractal dimension of the zeroset of an fBm process in 2D
dF522H, 0,H,1 @30,31,36#. Given that the ordinate of
Fig. 7 is the dimensionless quantitySna and thatSn}a12dF,
it is clear that the slope of the curves in logarithmic scale
dF2252H. Hence the specific surface area for a give
lattice size can be related to that for a different size throu
the equation:

-

r

FIG. 7. Dimensionless specific surface area vs lattice size,
single-cell fBm media.
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Sn1

Sn2
5S a1

a2
D H21

; 0,H,1. ~7!

It is also noteworthy that for negative values ofH, the di-
mensionless specific surface area (Sna) is, practically, inde-
pendent of the lattice size. AsH→2`, fully random media
are obtained and the validity of Eq.~5! is confirmed. On the
other hand, forH.1 the constructed medium is strong
correlated and an increase of the lattice size merely yield
increased resolution of the same pore shape. This imp
certainly, that the specific surface area (Sn) is independent of
the lattice size. Hence,Sna becomes proportional toa, and,
consequently, the slope of the corresponding curve in Fi
is equal to21.

As it was mentioned in the previous section, the constr
tion of multicell interwoven fBm lattices leads to porou
media with stronger correlation than that of media result
from single lattices. This increased correlation is expecte
lead, in turn, to lower values of the specific surface area
the same lattice size in a single cell. In addition, the dim
sionless specific surface area approaches a limiting valu
the number of interwoven cells increases~Fig. 8!. This limit
is a function of the Hurst exponentH, the porosity of the
medium« ~Fig. 9!, and, of course, of the resolution of th
individual cells. The existence of a limitingSna value that is
independent of the overall sample size combined with
capability of constructing media with characteristic si
much longer than the correlation length render the multic
fBm approach proposed here truly advantageous over
traditional single-cell approach. The latter leads to poro
media with dimensionless specific surface area that
strongly dependent on the size of the working lattice; in
dition, the size of the lattice is comparable to the correlat
length of the porous medium constructed by the single-
method. Figure 10 reveals an additional, interesting prop
of the interwoven fBm media. Namely, the dimensionle
specific surface area of these media is related to tha
single-cell media of the same cell-scale resolution throu
the simple expression

FIG. 8. Convergence of the dimensionless specific surface-
values with increasing number of cells,Np . Variation with the
value of the Hurst exponent,H.
an
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~Sna!0
(N)>2H~Sna!p

(N) , ~8!

where subscript 0 denotes single-cell quantity, subscripp
denotes multicell quantity, and superscript~N! denotes the
size of a single lattice/cell. Note that this expression holds
the range 0,H,1 for any porosity value. For weakly cor
related mediaH,0 the corresponding expression becom
simply

~Sna!0
(N)5~Sna!p

(N) . ~9!

On the other hand, for strongly correlated media,H@1,
the specific surface areaSn is independent of the lattice size
and the following expression holds with a very high degr
of accuracy~mean error,1%):

log10

~Sna!0
(N)

~Sna!p
(N)

>
1

2
. ~10!

The above equations, Eqs.~8!–~10!, provide simple means
for the quantification of the interrelation between single-c
and multicell, interwoven fBm media.

ea

FIG. 9. Dependence of the dimensionless specific surface
on the porosity of 2D multicell fBm media. Variation with the Hur
exponent value,H.

FIG. 10. Correlation of multi- and single-cell specific surfac
area values. Validation of the proposed Eq.~8!.
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TABLE I. Percolation threshold values for single and multicell fBm lattices. Number of realizations:

H Np51,N5128 Np54,N516 Np58,N516 Np516,N516 Np532,N516

Percolation through either principal direction

0.95 0.39860.134 0.45260.098 0.46760.082 0.48060.056 0.49260.037
0.7 0.40460.126 0.46460.092 0.47660.079 0.49060.053 0.50360.038
0.3 0.45160.100 0.48760.078 0.50160.062 0.51460.042 0.52560.028
0.0 0.49760.074 0.51460.065 0.52560.050 0.53760.031 0.54060.017

Percolation through a single direction only

0.95 0.51860.171 0.51660.113 0.51260.092 0.51060.062
0.7 0.51960.156 0.52360.105 0.51960.088 0.51860.059
0.3 0.52560.120 0.53560.091 0.53660.072 0.53860.048
0.0 0.54460.087 0.54860.074 0.54960.055 0.55160.034
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C. Percolation properties

It has been repeatedly realized@13,32,33,36–39# that me-
dia with long-range correlations, such as those constru
by the fBm procedure, exhibit percolation properties that
largely different from those of random or short-range cor
lated systems. In the latter systems, although the value o
percolation threshold depends on the microstructure of
medium, the values of the critical exponents retain their u
versality. However, systems with long-range correlations
have quite differently, inasmuch as the value of the criti
exponents is no longer universal@36,37#. Detailed percola-
tion studies on systems that follow fBm statistics@13,33,39#
have shown that the percolation thresholdp is a random
variable with a mean valuêpc& that decreases with increa
ing H in a monotonic fashion.

In the present paper, mean percolation threshold va
and standard deviation values are determined for single
and multicell lattices constructed by the midpoint displa
ment and successive random addition method. The effec
the single-lattice size, the number of cells in the multic
approach, and the value of the Hurst exponent on the pe
lation threshold properties are thoroughly investigated us
a large number of realizations for each data set. The valu
the percolation threshold for each realization is determi
using the cluster labeling algorithm proposed by Hoshen
Copelman@40#, and described also by Stauffer@41#.

Our numerical estimates for the percolation threshold
summarized in Table I. The results for the percolati
threshold and the standard deviation in the single-lattice c
(Np51) are in excellent agreement with the correspond
values obtained in earlier studies@13,33,39#. As the degree
of correlation increases, the mean value of the percola
threshold decreases, as expected, whereas the standard
tion increases. On the contrary, the construction of multic
lattices leads to increased percolation threshold values
considerably reduced standard deviation. Given that the m
ticell approach intensifies correlation@Fig. 5~a!#, the above
result is seemingly at variance with many reports on the
fect of correlation on the percolation threshold. However,
investigation of the internal structure of multicell media a
the calculation of the inaccessible pore space reveal tha
cell interweaving along the cell boundaries gives rise to
creation of isolated cavities that contribute to the total por
ity but not to percolation. The fact that the standard deviat
decreases considerably as the number of cells increases
ed
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firms the statistical validity of multicell fBm lattices in term
of their structural properties.

In the above calculations, one must point out that per
lating clusters are defined as those crossing two parallel s
of the working sample in any of the two principal direction
If, however, the identification of percolating clusters is co
fined to a fixed direction only, then higher threshold values
are obtained for the single-cell case~Table I!. This effect is
less pronounced in the multicell fBm case, which yiel
higher percolation threshold values and closer to the rand
limit one ~0.59!.

V. TRANSPORT THROUGH AN fBm GENERATED
POROUS MEDIUM

A. Calculation of the flow field

The creeping flow of a Newtonian fluid is described
the Stokes equation coupled with the continuity equation

“p5m¹2n ~11a!

“•n50, ~11b!

wheren andp are the local velocity and pressure of the flui
respectively. The boundary conditions forn are spatial peri-
odicity and no slip at the surface of the solid unit elemen

The above set of equations applies locally at each poin
the void space. In addition, an externally applied mac
scopic pressure gradient“P is specified. The seepage velo
ity ^n& is the superficial velocity averaged over a cross s
tion of the medium. This quantity is related to th
macroscopic pressure gradient by the permeability tensoK,
as follows:

^n&52~K/m!•“p. ~12!

K is a symmetric tensor that depends only on the geometr
the system. For isotropic media,

K5KI , ~13!

whereI is the unit tensor. If in the present case one consid
this two-dimensional medium as a cross section of a 3D m
dium that is invariant in the third directionz-, then it is a
simple matter to realize thatK can be written as@5#
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K5S K' 0 0

0 K' 0

0 0 K i

D , ~14!

whereK i andK' are the corresponding permeabilities in t
longitudinal ~z! and transversal (x,y) directions, respec-
tively.

The determination of the longitudinal permeabilityK i is
quite simple since the corresponding Stokes equation is
duced to a simple Poisson equation that can be easily so
by a successive overrelaxation scheme@4#. The determina-
tion of the transversal permeability, on the other hand
much more complicated. The numerical method employe
this paper is similar to the one used by Adler and co-work
@5,6#. A finite difference scheme using the marker-and-c
~MAC! method@42# has been employed. More specifically,
staggered marker-and-cell mesh is used, with the pres
defined at the center of the cell, and the velocity compone
defined along the corresponding surface boundaries of
rectangular cell. A successive overrelaxation method is u
to solve for the microscopic velocity field. In order to cop
with the numerical instabilities caused by the continu
equation, an artificial compressibility technique has been
ployed @42#, according to which an accumulation term f
the pressure is included in Eq.~11b!. In this fashion, the
steady-state problem is replaced by an unsteady one, w
converges to the incompressible steady-state solution at
ficiently long time.

The mesh spacing in each direction is a fraction of
size of the unit elements. Thus, it is given byDx5Dy
5a/Ns , whereNs is an integer denoting the discretizatio
inside each unit element occupied by liquid. Converge
was achieved when the calculated flow-rate values fluctu
less than 1% across the various cross sections of the med
For a given realization, it is found thatNs has no significant
effect onK' as has also been concluded in previous stud
@5#, while it has a quite strong impact onK i , epecially at low
porosity values, again in full agreement with earlier stud
@4#. In general, a value ofNs51 to 2 for the case ofK' , and
Ns52 to 4 for the case ofK i , combined acceptable accurac
and reasonable computational time~relative error;1% for a
specific realization!. In general, convergence was faster
medium to high porosities («.0.7), where isolated areas an
bottlenecks are very limited.

For the case of transversal permeability, a typical fl
field resulting from the solution of the flow equations in
porous medium generated by fBm lattices is shown in F
11, forH50.7 and forH50.0. It is interesting to observe th
fast flow paths that are generated by the structure correla
resulting in facilitated transport through the strongly cor
lated medium (H50.7) over the less correlated structu
(H50.0). The permeability results obtained from this n
merical study are discussed next.

B. Permeability results

The average permeability of porous media generated
fBm lattices has been determined for different degrees
correlation, obtained by varyingH, and for different values
of porosity starting from large values («50.9) and ap-
proaching the percolation threshold value^pc&. The results
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are averaged over a number of realizations for the sa
structural conditions~porosity and Hurst exponent! to limit
possible statistical errors. Given the relatively large size
working samples (NpN5128) used in our computations,
small number of realizations~8–10! was found to suffice for
statistically meaningful permeability results@5#. However, as
the percolation threshold value is approached, the requ
number of realizations must increase in order to keep
statistical error constant, because of the poor percolation
countered in this region.

Figure 12 presents the dependence of the longitudinal
meability K i , for Np58 and N516 on the porosity, for
different values ofH. It was found that this working size wa
sufficient for the estimation of size-independent permeabi
values, averaged over several realizations and expresse
units of pixel area,a2. As expected, the permeability in
creases with the value of the Hurst exponentH over the
entire porosity range examined here. It is interesting to n
that the permeability of strongly correlated fBm media c
become as much as two orders of magnitude higher than
of random porous media, even for high porosity values, t
is, even away from the percolation threshold. This obser
tion implies that fBm porous media can be employed in
study of flow in actual porous media that exhibit permeab
ties over a wide range of absolute values.

In Fig. 13, the corresponding dependence of the trans
sal permeabilityK' on the porosity is presented, for differen

FIG. 11. Flow field in 2D fBm media.«50.8. Top,H50.7;
bottom,H50.0.
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values of H, keeping the lattice size constant (Np58, N
516). Similar conclusions to the above can be drawn in t
case. Note that for transversal flow the permeability va
drops dramatically as the percolation threshold of the m
dium is approached. However, the fact that the percola
threshold is a statistical quantity allows for the existence
finite transversal permeability values even below the aver
percolation threshold values, which are reported in Table

VI. CONCLUSIONS

The structural and flow properties of porous media gen
ated by fBm processes were studied in this paper. In addi
to the conventional midpoint displacement and succes
random addition method, a construction technique was p
posed that yields interwoven, multicell fBm media. It w
shown that porous media generated by the latter method
sess improved structural properties compared to those
single cell fBm media, whereas they retain a we
characterized fractality behavior. More specifically, it w
found that as the number of cellsNp increases, keeping th
Hurst exponentH and the porosity« constant, the autocor
relation also increases until a criticalNp value is reached
beyond which the correlation curve remains unchanged
becomes characteristic of the prescribed structural featu
The dimensionless surface area of multicell media also
tains a limiting value that is a function ofH and « but is
independent of the number of cells used. On the contrary,
dimensionless surface area of single-cell fBm media i
strong function of the lattice size, in general, with the exc
tion of completely uncorrelated media, in which case a li
iting value is obtained upon sufficient growth of the workin
lattice. Simple expressions were proposed that relate the
cific surface area of a multicell fBm porous medium to th

FIG. 12. Dimensionless longitudinal permeability vs porosity
fBm media. Variation with the value of the Hurst exponent,H.
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of the corresponding single-cell medium over the ent
range ofH values.

The percolation threshold of fBm porous media is a fun
tion of H alone, keeping the particular details of the co
struction procedure the same. AsH increases, the mean valu
of the percolation threshold for both single- and multic
media decreases. However, it was found that the stan
deviation of the percolation threshold values is considera
lower in the multicell case compared to the traditional sing
cell case. It was interesting to observe that, although
correlation degree increases upon increasing the numbe
cells, the percolation threshold increases as well. This beh
ior can be attributed to the fact that the cell interweaving p
of the construction process gives rise to considerably in
cessible pore space, as was confirmed by numerical calc
tions. The same reasoning applies to the interpretation of
permeability results: Interwoven fBm media exhibit low
transverse and longitudinal permeability values than the c
responding single-cell media for the sameH and« values.

In summary, the construction of interwoven fBm bina
lattices can lead to a versatile representation of porous
dia, with improved structural properties compared to tho
produced by traditional, single-cell fBm lattices. The ran
of structural and flow properties of such porous reconstr
tions is very broad, so that different classes of porous me
can be efficiently simulated, provided that the value of t
Hurst exponent is properly adjusted.
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