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Structural and flow properties of binary media generated by fractional Brownian motion models
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In the present paper, the structural and flow properties of binary media generated by two-dimensional lattices
that follow fractional Brownian motion statistics are studied. A modification of the midpoint displacement and
random addition method is employed in order to generate multicell binary media with sizes that are consider-
ably larger than the correlation length of the medium. Several structural properties, such as the autocorrelation
function, the surface area, and the percolation threshold, are studied for different values of porosity and degree
of correlation. In addition, transport properties are investigated in the above media, by solving numerically the
momentum and continuity equations, to determine the absolute permeability of the medium in directions
parallel and normal to the fractional Brownian motidBm) plane. It is found that multicell fBm porous media
possess very interesting structural properties that are functions of the Hurst exponent and porosity, and are
independent of the lattice size, in contrast to the traditional single-cell fBm media. In addition, they exhibit
stronger structural correlation, lower specific surface area, higher percolation threshold, and lower permeabili-
ties than those of the corresponding single-cell porous mggi063-651X%99)01506-9

PACS numbds): 02.70—c, 47.55.Mh, 47.53tn, 05.40--a

[. INTRODUCTION large thin sections is available that will eliminate certain
weaknesses of the stochastic reconstruction procedure.
Transport in porous media is a central issue in many tech- The concept of correlated pore structure is relevant in
nological applications including filtration, waste treatment,most practical porous materials, especially in geological me-
enhanced oil recovery, etc. The prediction of the permeabildia which, owing to their long formation history through the
ity of a porous medium is a problem of great practical inter-centuries, are likely to have developed strong correlation of
est, since it provides an effective measure of the performancstructural elements. It has been recently realized that many
of the medium under the action of inherent or externallynatural porous media and aquifers exhibit long-range corre-
applied pressure gradients. In determining the permeabilitjations[12], which are responsible for the unusual transport
of a real porous medium two major problems are typicallyand percolation characteristics compared to those of disor-
encountered: the difficulty to represent accurately the porelered media with short-range correlations, or even of random
structure and the difficulty to calculate accurately the flowmedia[13,14). A special class of long-range correlations is
field within the complex geometry of the structure by solvingthe one obeying the statistics of fractional Brownian motion
the corresponding transport equations. (fBm) [15]. This property appears to characterize many natu-
The evolution of the modeling approaches to the aboveal systemq16], with a special emphasis on heterogeneous
problem over the last three decades, from the simplified celborous media, in terms of surface morpholddy,18, crack
models[1] to the more sophisticated, yet still limited, net- propagatiorf19], or even distribution of permeabilities in oil
work models(for a review see Bryant, Mellor, and Cafdg), reservoirg 12]. Furthermore, many engineering applications
is a result of advances in theory and experimental techniquea porous media can be described by fBm statistics, namely,
as well as in computational power. A third class of modelspressure fluctuations in a bubble colurf20], solid-liquid
involves the direct solution of the transport equations in unluidized bedg21,22, saturation profiles in slow drainage in
consolidated3] or consolidated4—7] arrays of solid objects porous medig 23,24, three-phase relative permeability in
arranged in random or self-similar configurations. Recentlyheterogeneous medja5], etc.
Adler, Jacquin, and Quibligf8], loannidis and co-workers In all previous studies, fBm statistics have been employed
[9,10] and Yaoet al. [11], have used reconstructions from to simulate the local conductivity variation and to explain
serial thin sections of actual porous media and solved thenusual transport and/or percolation behavior of actual po-
transport equations to determine their transport propertiesous media. Among the objectives of the present paper is to
The reconstructed media are, essentially, binary matrices thaemonstrate the applicability of fBm construction technigues
result from a fine discretization and digitization of the actualto the simulation of porous media based on experimentally
porous medium. This class of models provides more direcineasured properties of two-dimensiorfaD) images, such
estimates of the permeability and the formation factor tharas porosity and autocorrelation function. To this end, a thor-
the first two classes, provided a detailed series of sufficientlpugh study of several basic structural properties of fBm-
generated media is presented. The generated sections of the
porous medium are square lattices made of square elements
*Permanent address: NCSR Demokritos, Institute of Physicabccupying solid or liquid phase according to an fBm distri-

Chemistry, 153 10 Ag. Paraskevi Attikis, Athens, Greece. bution. For the first time, pore structures that follow fBm
TAuthor to whom correspondence should be addressed. Electrongtatistics with size considerably larger than the basic fBm
address: vbur@iceht.forth.gr correlation length, are constructed. These multicell media are
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shown to exhibit interesting structural properties that are in-

dependent of the overall lattice size, in contrast to traditional

fBm media. A numerical study of the correlation properties

of fBm generated single-cell and multicell binary media is @
conducted that involves the calculation of the autocorrelation

function for different degrees of correlation by varying the

value of the Hurst exponent. Specific surface area and per-

colation properties of such media are also determined for Type 1 Type 2 Type 3
different degrees of correlation. Finally, the Stokes equation

coupled with the continuity equation are solved and the di-

agonal terms of the permeability tensor are determined for

different porosities and degrees of spatial correlation. Cell 1 Cell 2 Cell 3

Il. CONSTRUCTION OF A BINARY MEDIUM ® y
Consider the image of a 2D section of a porous medium.
Using standard techniqué®6], this section can be described ® ®
by a 2D matrix of binary pixels, which take the values of 0
and 1 in the solid and pore phases, respectively. The phast 9 ?
function of the medium is then defined as follows:
1 if x belongs to the pore space W U

Z(x)=

0 otherwise,

¢

T
wherex is the position vector from an aribitrary origin. %/—/
The porositye and the normalized autocorrelation func- Coll N1
tion R,(u) can be defined by the statistical averaf&26),

FIG. 1. Midpoint displacement in two dimensions. Nodes are

e=(Z(x)), (28)  centers of square pixels, to be labeled solid or véi Single-cell

case andb) multicell case(proposed in this worlk.

((Z(x) = e)(Z(x+u)—e)) . L
> . (2b)  whereH is the Hurst exponent. Fdi =3, one recovers the

e€—¢e regular Brownian motion. FoH>0, fBm entails spatially

- ) ) ) growing correlations, whereas for strongly negative values of
Note that(-) indicates spatial average. For an isotropic me-(j the medium becomes random. Excellent reviews regarding
dium, R,(u) becomes one-dimensional as it is a function ofthe properties of fBm can be found elsewh§te,30.
u=|u| only [8]. Ideally, a representative reconstruction of a  Several variants of fBm have appeared in the literature. In
medium in three dimensions should have the same correlahe present paper, each site of the 2D lattice is assigned a
tion properties as those measured on a single twonumber that satisfies E3), using the method of midpoint
dimensional section, expressed by the various moments afisplacement and successive random addifgh31]. This
the phase function. In practice, matching of the first twomethod is illustrated schematically in Fig@al If the mesh
moments, that is, porosity and autocorrelation function, hasizea, denotes the resolution of the starting 2D dftighe 1),
been customarily pursued. Following the original work by one can obtain another square lattice of resolutighy2 by
Joshi[27] and the refinements suggested by Quib[i28] adding sites at the centers of all squares. The new lattice is
and Adler, Jacquin, and Quibli¢B], one can generate the tilted by 45° (type 2. Inserting the centers of the new
discrete phase functiof(x) starting from a Gaussian field squares to the starting grid recovers the original orientation
X(x), which, subsequently, is passed through a linear and @f the lattice but with a resolution afy/2 (type 3. At each
nonlinear filter to produce binary matrices, with the first two stage,n+1, the newly defined sites are assigned values that
moments of the phase function matching those of a singléesult from averaging the values of the closest neighboring
section. The above procedure can be quite tedious for routingites and adding random deviat@sidpoint displacemet
applications, while in its present state it suffers from severawith variance satisfying
limitations [29].

Rz( u)=

one1=(3)Map. @
IIl. GENERATION OF A BINARY MEDIUM FOLLOWING The older sites can either retain their original values or be

FBM STATISTICS updated by a random addition of deviates with variance

Consider a 2D lattice with sites that follow fBm statistics. @n+1 (Successive ranQom addl'F&DnThe abpve procedprg
Following Mandelbrot and Van Ne$45], one defines frac- €an generate a 2D lattice with sites following fBm statistics

tional Brownian motionBy(x) as a process that satisfies [13,30. In order to transform it to a binary medium of a
given porositye one can simply sort the site values in a

(By(x) —Bu(Xg))=0, (39 one-dimensional array of ascending order and assign zero
values to the lower part of the array with length (1
([Bu(X)—By(X0) 1%y =|x—xo|?", (30 —&)N,N, and the value of one to the rest, whétgandN,
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FIG. 2. Two-dimensional images constructed by fBe=0.5).
Variation with theH value, keeping the random number generator
seed constant.

are the number of grid points in theandy directions, re- # - ; il |
spectively. Note that throughout this study, unless otherwise % e e ' R s
indicated, it is assumed thak=N,=N. Ayrera SUREH CF S (yg—*"
Some realizations of binary media generated by the above =~ 7 £
procedure for different values &f are shown in Fig. 2. Asl
decreases, the correlation of the structure weakens, switchiqg
from a strongly correlated structure ldt=0.95 to a poorly
correlated one foH=0. Hence, in principle, one can gener- |V. STRUCTURAL PROPERTIES OF BINARY MEDIA
ate binary media of any degree of correlation by appropri- GENERATED BY FBM LATTICES
ately selecting the value of the Hurst exponentHowever,
it is evident from Fig. 2 that such a construction leads to
porous media of size comparable to the correlation length. The correlation properties of fBm models applied to con-
From a statistical point of view, such media cannot be usedinuous variables, such as the local conductivity, have been
as valid representations of real porous media since they comletermined by several authors using various definitions of
tain only a limited number of pores in each realization. Tocorrelation functions, semivariograms, dit2,32,33. Since
remedy this, one must revisit and modify the procedure ofn the present paper a thresholding technique is used to trans-
generating 2D fBm lattices. This is accomplished in theform a 2D fBm lattice to a binary medium, that is, to a
present paper in the following fashion: The original lattice ismedium that is fully characterized by discrete variai®4),
divided into a number of smaller lattices, each of which isit will be interesting to calculate and discuss the autocorre-
decorated according to the standard fBm procedure outlineldtion function of the medium defined by E®b). The re-
above using a fixed value ¢f. However, grid points at the sults for single-cell fBm lattices for different values bff
boundaries between adjacent sublattices receive contributidteeping the porosity constant €0.5), are shown in Fig.
from both neighboring cells during the averaging procedure4(a). The dimensionless distancels defined as the ratio of
Figure Xb) shows the multicell configuration at the initial actual distance measured on the 2D medium and the pixel
construction step. Boundary sites that are decorated receigize, that isu=x/a,. As H decreases, the degree of correla-
ing contributions from two adjacent cells are denoted blankion decreases also, in accordance with the observation made
for easier identification. Examples of lattices constructedoy inspection of the corresponding images in Fig. 2. Further-
with this technique using various numbers of individual cellsmore, if the grid size is increased by a factor of 2, while
Np while keeping the same values for the porosity and the&keeping the rest of the parameters constant, the correspond-
Hurst exponent, are presented in Fig. 3. It is evident that thing correlation degree will also increase. However, since the
above modification can generate lattices with an adjustablpixel size of the lattice is also decreased by the same factor,
degree of correlation, and sizes that are considerably largehe correlation function plotted in terms of dimensional dis-
than the correlation length. tance(i.e., in length units and not in pixel-number units

FIG. 3. Binary media constructed using multiple fBm cells.
=0.7,£=0.5, andN=16.

A. Correlation function
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FIG. 5. (a) Effect of the number of fBm cellsN,) on the
autocorrelation function, keeping the size of each individual cell
constant N=16). H=0.7.(b) Autocorrelation function of multicell
fBm media, all constructed witid=0.7, using proper pixel-size

N=128 scaling. TheH=0.3 correlation function cannot be forced to match
(b) the H=0.7 family curves with any linear pixel-size rescaling.

FIG. 4. () Effect of the Hurst exponent value on the autocorre-
lation function of single-cell fBm mediab) Effect of the lattice
size on the construction of single-cell fBm media, using the sam
random number generator seed=0.5,N,=1, H=0.7.

theless, it is important to stress that proper rescaling of
the pixel size in each lattice can merge all the above corre-
Fation curves into a single one, as can be seen in Rig. 5
This correlation curve is characteristic of the specific value
of H used(0.7). Use of a different value leads to a differ-
(u), will be identical to the one obtained for the original ent correlation curvgFig. 5b)], which cannot be forced to
lattice. A set of images that follow fBm statistics with  coincide with theH=0.7 curve through any pixel-size scal-
=0.5 andN,=1 is shown in Fig. 4). The seed for the ing.
initiation of the random number generator is kept constant The aforementioned procedure can be employed for the
for all images, but the grid size is changed by a factor of 2. Ireconstruction of real porous media using single cross sec-
is clear by simple inspection that increasing the grid sizeions of impregnated samples, following a single or double
results in a binary medium of higher resolution, while its pore-casting techniquigl1]. The pictures of actual sections
correlation properties remain exactly the same. are digitized with appropriate software to yield binary im-
Similar results are obtained in the case of binary mediaages and the corresponding 0/1 two-dimensional arrays. The
generated by the cell interweaving technique presentegorosity and the autocorrelation function are then determined
above. Figure &) shows the variation of the correlation in a straightforward manner from Eg&a and (2b) using
function with the number of celld\,, used to construct the directly theZ(x) data[Eq. (1)]. Subsequently, the multicell
medium. Note that the correlation curve undergoes a signififBm technique can be applied to yield images that have the
cant shift to higher values as the number of cells increasesame porosity and the sart@ similarn autocorrelation func-
until a sufficient number of cells are reached, beyond whichion as the experimental ones through proper selection of the
the correlation function remains almost unchanged. NeverH, Ny, andN values. An illustration of the application of this
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FIG. 7. Dimensionless specific surface area vs lattice size, for
single-cell fBm media.

dia would need a three-dimensional extension of the present
paper, which is currently in progress.

B. Surface area

The calculation of the specific surface area of pixelized
porous media rests on the identification and counting of the
actual solid faces of the unit elements, that is, of the solid
faces that make up the void-solid interface. An analytical
expression is available for the fully random case only, which
is derived rigorously by Burgang84], for three dimensional
(3D) media. It is straightforward to show that this expression
is generalized to

2de(l—¢)
S, randosz; d=1,2,3 (5)

whered is the dimensionality of the random process arid

the pixel size. Although the porous medium is, naturally, a
3D body, the valuel=2 must be used here as the construc-
tion procedure applies to the cross section only and the me-
dium is invariant in the third direction. For correlated media,
the specific surface area can also be determined from the
slope of the autocorrelation function a0 [35]:
S,=—4(s—£?)R;(0). (6)

The results for the dimensionless specific surface area
(S,a), of porous media constructed by the aforementioned

correlation function of actual section and fBm-generated image fomidpoint displacement and successive random addition
the Vosges sandstone sample(aft

method are shown in Fig. 7 for single working cells
=1). Subscript 0 is used to denote single-cell quantities. In

procedure for a Vosges sandstone sample is shown in Figieg-log scale, the resulting curves are almost linear, with
6(a) and @b). The image that was generated by the multicellslopes equal to-H to a good approximation. Note that the

fBm method is shown in Fig. (@) (bottom along with the
digitized image of a physical section of the sam(itsp) for
the sake of direct comparison. The fBm-generated image hdsg. 7 is the dimensionless quant®ya and thatS,xa

fractal dimension of the zeroset of an fBm process in 2D is

de.=2—-H, 0<H<1 [30,31,38. Given that the ordinate of
1-dp

the same porosity as that of the physical section, whereas ittis clear that the slope of the curves in logarithmic scale is
autocorrelation function resembles closely the experimendr—2=—H. Hence the specific surface area for a given

tally measured onfgFig. 6(b)]. A more detailed study of the

lattice size can be related to that for a different size through

applicability of the multicell fBm method to real porous me- the equation:
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values with increasing number of cellsl,. Variation with the
value of the Hurst exponent.

(sa)fV=2"(s,a)f, ®)
H-1
5”1: & - 0<H<L1. 7) where subscript 0 den(_)tes single-cell quantity, subsgript
Sz \a denotes multicell quantity, and superscr{pl) denotes the

size of a single lattice/cell. Note that this expression holds in
the range 8<H<1 for any porosity value. For weakly cor-
related mediaH <0 the corresponding expression becomes
simply

It is also noteworthy that for negative values ldf the di-
mensionless specific surface ar&d) is, practically, inde-
pendent of the lattice size. A$3— — oo, fully random media
are obtained and the validity of E¢p) is confirmed. On the
other hand, forH>1 the constructed medium is strongly (s,aM=(s,a)™, )
correlated and an increase of the lattice size merely yields an g vep

increased resolution of the same pore shape. This implies, 5, the other hand, for strongly correlated mediz 1,
certainly, that the specific surface areg)is independent of o specific surface areg, is independent of the lattice size,

the lattice size. Hence,a becomes proportional t, and, — anq the following expression holds with a very high degree
consequently, the slope of the corresponding curve in Fig. {¢ accuracy(mean error<19%):

is equal to—1.

As it was mentioned in the previous section, the construc- (S a)gN) 1
tion of multicell interwoven fBm lattices leads to porous Iogm”—(mzz. (10
media with stronger correlation than that of media resulting (S,a)p

from single lattices. This increased correlation is expected to _ ) )

lead, in turn, to lower values of the specific surface area fod he above equations, Eq)—(10), provide simple means
the same lattice size in a single cell. In addition, the dimenfor the quantification of the interrelation between single-cell
sionless specific surface area approaches a limiting value @&ad multicell, interwoven fBm media.

the number of interwoven cells increag€sy. 8). This limit

is a function of the Hurst exponeit, the porosity of the

mediume (Fig. 9), and, of course, of the resolution of the

individual cells. The existence of a limitirfg,a value that is

independent of the overall sample size combined with the

capability of constructing media with characteristic size s

much longer than the correlation length render the multicell 2

fBm approach proposed here truly advantageous over the . 081

traditional single-cell approach. The latter leads to porous z

media with dimensionless specific surface area that is % %7 —a—H=1.0
strongly dependent on the size of the working lattice; in ad- N=16 —a—H=0.7
dition, the size of the lattice is comparable to the correlation ®51 los —+—H=0.3
length of the porous medium constructed by the single-cell ' —e— H=0.0
method. Figure 10 reveals an additional, interesting property 0.5 T T o 5 I pr

of the interwoven fBm media. Namely, the dimensionless
specific surface area of these media is related to that of
single-cell media of the same cell-scale resolution through FIG. 10. Correlation of multi- and single-cell specific surface-
the simple expression area values. Validation of the proposed Eg).

LATTICE SIZE, N
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TABLE I. Percolation threshold values for single and multicell fBm lattices. Number of realizations: 500.

STRUCTURAL AND FLOW PROPERTIES OF BINAR. ..

H Np=1N=128 Np=4N=16 N,=8N=16 Np,=16N=16 Np=32N=16
Percolation through either principal direction
0.95 0.398:0.134 0.452-0.098 0.4670.082 0.480-0.056 0.492-0.037
0.7 0.404-0.126 0.464-0.092 0.476:0.079 0.496:-0.053 0.503:0.038
0.3 0.4510.100 0.48%0.078 0.5010.062 0.514-0.042 0.525:0.028
0.0 0.4970.074 0.514-0.065 0.525:0.050 0.53%0.031 0.546:0.017
Percolation through a single direction only
0.95 0.5180.171 0.516:0.113 0.512-0.092 0.516:0.062
0.7 0.519-0.156 0.5230.105 0.519-0.088 0.5180.059
0.3 0.525-0.120 0.535:0.091 0.536:0.072 0.538:0.048
0.0 0.544-0.087 0.5480.074 0.54%-0.055 0.5510.034

C. Percolation properties

7191

firms the statistical validity of multicell fBm lattices in terms

It has been repeatedly realizEtB,32,33,36—3pthat me-  ©f their structural properties. _
dia with long-range correlations, such as those constructed !N the above calculations, one must point out that perco-
by the fBm procedure, exhibit percolation properties that aréting clusters are defined as those crossing two parallel sides
largely different from those of random or short-range corre-Of the working sample in any of the two principal directions.

lated systems. In the latter systems, although the value of tHe owever, the identification of percolating clusters is con-

percolation threshold depends on the microstructure of théned to afixed direction only, then higher threshold values

medium, the values of the critical exponents retain their uni&r¢ obtained for the single-cell cagkable ). This effect is

versality. However, systems with long-range correlations bel-e_s‘S pronouncgd in the multicell fBm case, which yields
have quite differently, inasmuch as the value of the criticalh'g_her percolation threshold values and closer to the random
exponents is no longer universi@6,37). Detailed percola- IMit one (0.59.

tion studies on systems that follow fBm statistjds,33,39
have shown that the percolation threshg@ds a random
variable with a mean valugp,) that decreases with increas-
ing H in a monotonic fashion.

In the present paper, mean percolation threshold values ] . o )
and standard deviation values are determined for single-cell The creeping flow of a Newtonian fluid is described by
and multicell lattices constructed by the midpoint displacehe Stokes equation coupled with the continuity equation:
ment and successive random addition method. The effects of Vp= V2 (113
the single-lattice size, the number of cells in the multicell K
approach, and the value of the Hurst exponent on the perco-
lation threshold properties are thoroughly investigated using
a large number of realizations for each data set. The value of ) )
the percolation threshold for each realization is determined/nere» andp are the local velocity and pressure of the fluid,
using the cluster labeling algorithm proposed by Hoshen anfespectively. The boundary conditions ferare spatial peri-
Copelman{40], and described also by Stauffetl]. odicity and no slip at the §urface olf the solid unit elemgnts.

Our numerical estimates for the percolation threshold are The above set of equations applies locally at each point of
summarized in Table 1. The results for the percolationth® void space. In addition, an externally applied macro-
threshold and the standard deviation in the single-lattice casteOPIC pressure gradieWtP is specified. The seepage veloc-
(N,=1) are in excellent agreement with the correspondingy (¥} is the superficial velocity averaged over a cross sec-
values obtained in earlier studig3,33,39. As the degree ton of the medium. This quantity is related to the
of correlation increases, the mean value of the percolatiof’@croscopic pressure gradient by the permeability teKsor
threshold decreases, as expected, whereas the standard de@@follows:
tion increases. On the contrary, the construction of multicell
lattices leads to increased percolation threshold values with
considerably reduced standard deviation. Given that the mul-
ticell approach intensifies correlatidirig. 5a)], the above K is a symmetric tensor that depends only on the geometry of
result is seemingly at variance with many reports on the efthe system. For isotropic media,
fect of correlation on the percolation threshold. However, an
investigation of the internal structure of multicell media and K=KI, (13
the calculation of the inaccessible pore space reveal that the
cell interweaving along the cell boundaries gives rise to thevherel is the unit tensor. If in the present case one considers
creation of isolated cavities that contribute to the total porosthis two-dimensional medium as a cross section of a 3D me-
ity but not to percolation. The fact that the standard deviatiordium that is invariant in the third directiom, then it is a
decreases considerably as the number of cells increases caimple matter to realize th#t can be written a5]

V. TRANSPORT THROUGH AN fBm GENERATED
POROUS MEDIUM

A. Calculation of the flow field

V.»=0, (11b)

(¥)=—(KIp)-Vp. (12
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K, 0 0
k= 0 kK, o], (14)
0 0 K

whereK| andK, are the corresponding permeabilities in the
longitudinal (z) and transversal x(y) directions, respec-
tively.

The determination of the longitudinal permeabilKy is
quite simple since the corresponding Stokes equation is re-
duced to a simple Poisson equation that can be easily solved
by a successive overrelaxation schefdé The determina-
tion of the transversal permeability, on the other hand, is
much more complicated. The numerical method employed in
this paper is similar to the one used by Adler and co-workers
[5,6]. A finite difference scheme using the marker-and-cell
(MAC) method[42] has been employed. More specifically, a
staggered marker-and-cell mesh is used, with the pressure
defined at the center of the cell, and the velocity components
defined along the corresponding surface boundaries of the
rectangular cell. A successive overrelaxation method is used
to solve for the microscopic velocity field. In order to cope
with the numerical instabilities caused by the continuity
equation, an artificial compressibility technique has been em-
ployed[42], according to which an accumulation term for
the pressure is included in E@llb). In this fashion, the
steady-state problem is replaced by an unsteady one, which

H=07¢=08

ficiently long time.

The mesh spacing in each direction is a fraction of the
size of the unit elements. Thus, it is given yx=Ay
=a/Ng, whereNs is an integer denoting the discretization  rig 11, Flow field in 2D fBm medias=0.8. Top,H=0.7;
inside each unit element occupied by liquid. Convergencggtiom, H=0.0.
was achieved when the calculated flow-rate values fluctuated
less than 1% across the various cross sections of the medium. o
For a given realization, it is found thats has no significant are averaged over a ”“”.‘bef of realizations for t_he_ same
effect onK, as has also been concluded in previous studie:étruc.tglraI cond!tloriporosnéand I:urstle)gpolnelnto I'm'.t f
[5], while it has a quite strong impact &, epecially at low posi! N stat|s|t|ca e”frs-z |ven(tj ere atively arge size o
porosity values, again in full agreement with earlier studieg¥©" l:ng sa;)mp efs Npll.\'_.l 8) used in ?ur %omput;fuonfs, a
[4]. In general, a value diig;=1 to 2 for the case df, , and stm? t_nur|r|1 ero r_eaf|z|at|or(58—1b(_)l_¥vas mg ;0 suttice for
Ns=2 to 4 for the case ok, combined acceptable accuracy tsha Istica lytr_nea?rl]ng lﬁ] |c|)derm<|aa My resulf ].h gwtehver, as. d
and reasonable computational tifmelative error~1% for a € percoiation threshold value 1S approached, the require

specific realization In general, convergence was faster atnurr)bgr of realizations must increase in order o kegp the

. . L i statistical error constant, because of the poor percolation en-
medium to high porositiess(>0.7), where isolated areas and L .

A countered in this region.
bottlenecks are very limited. . T
. , Figure 12 presents the dependence of the longitudinal per-
For the case of transversal permeability, a typical ﬂowmeabilit K. for N.=8 andN=16 on the porosity. for

field resulting from the solution of the flow equations in adifferentyvaIHLjes oH pIt was found that this Woriin si;/,e was
porous medium generated by fBm lattices is shown in Fig ) 9

11, forH=0.7 and forH=0.0. It is interesting to observe the sufficient for the estimation of size-independent permeability

fast flow paths that are generated by the structure correlatioﬁ/,a [ues, averaged over several realizations and expressed in

. 2 T . _
resulting in facilitated transport through the strongly corre-unItS of p|?<el areaa’. As expected, the permeability in
. — creases with the value of the Hurst exponéhtover the
lated medium KH=0.7) over the less correlated structure

- o X . “entire porosity range examined here. It is interesting to note
g*eﬁc()é?)s:[ug;/eafeerdr?s?:?ggtta% rrias)l:sts obtained from this nu that the permeability of strongly correlated fBm media can

become as much as two orders of magnitude higher than that
of random porous media, even for high porosity values, that
is, even away from the percolation threshold. This observa-
The average permeability of porous media generated btion implies that fBm porous media can be employed in the
fBm lattices has been determined for different degrees o$tudy of flow in actual porous media that exhibit permeabili-
correlation, obtained by varying, and for different values ties over a wide range of absolute values.
of porosity starting from large valuess€0.9) and ap- In Fig. 13, the corresponding dependence of the transver-
proaching the percolation threshold val(g.). The results sal permeability<, on the porosity is presented, for different

H=00¢=08

B. Permeability results
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FIG. 12. Dimensionless longitudinal permeability vs porosity in  FIG. 13. Dimensionless transversal permeability vs porosity in
fBm media. Variation with the value of the Hurst exponeit, fBm media. Variation with the value of the Hurst exponehit,

values ofH, keeping the lattice size constari =8, N of the corresponding single-cell medium over the entire
' ’ range ofH values.

=16). Similar conclusions to the above can be drawn in this ™, percolation threshold of fBm porous media is a func-
case. Note that for transversal flow the permeability Valu%ion of H alone, keeping the particular details of the con-

drops_dramaticalrl]y as the percolr?ti?n thrﬁshor:d of thel MEstruction procedure the same. Msncreases, the mean value
dium is approached. However, the fact that the percolation o hercolation threshold for both single- and multicell
threshold is a statistical quantity allows for the existence o edia decreases. However. it was found that the standard

finite tlra_nsverr]sal Eelrdmeﬁb'“ty V?]I.uis even belov(\; t_he avbelragﬁeviation of the percolation threshold values is considerably
percolation threshold values, which are reported in Table |.5\yer in the multicell case compared to the traditional single-

cell case. It was interesting to observe that, although the
VI. CONCLUSIONS correlation degree increases upon increasing the number of

The structural and flow properties of porous media gener_cells, the percolation threshold increases as well. This behav-

ated by fBm processes were studied in this paper. In additiolp’ ¢an be attributed to the fact that the cell interweaving part
to the conventional midpoint displacement and successive! the construction process gives rise to considerably inac-
random addition method, a construction technique was proS€SSible pore space, as was confirmed by numerical calcula-
posed that yields interwoven, multicell fBm media. It was tions. Th(_e.same reasoning applies to the interpretation of the
shown that porous media generated by the latter method poB€rmeability results: Interwoven fBm media exhibit lower
sess improved structural properties compared to those 6§ansver_se ar_1d Iongltudlnal.permeablllty values than the cor-
single cell fBm media, whereas they retain a well- responding single-cell media _for the_saMeands vaIue;.
characterized fractality behavior. More specifically, it was !N summary, the construction of interwoven fBm binary
found that as the number of celi, increases, keeping the Ie}ttlceg can lead to a versatile repre;entatlon of porous me-
Hurst exponent and the porosity: constant, the autocor- did, With improved structural properties compared to those
relation also increases until a critichl, value is reached, produced by traditional, single-cell fBm lattices. The range

beyond which the correlation curve remains unchanged anﬂ'c strgctural and flow properties of such porous reconstruc-
flons is very broad, so that different classes of porous media

can be efficiently simulated, provided that the value of the

The dimensionless surface area of multicell media also a ’ .
urst exponent is properly adjusted.

tains a limiting value that is a function df and e but is
independent of the number of cells used. On the contrary, the
dimensionless surface area of single-cell fBm media is a
strong function of the lattice size, in general, with the excep- This work was financially supported by a GSRT grant
tion of completely uncorrelated media, in which case a lim-(PENED #1933 and by the Institute of Chemical Engineer-
iting value is obtained upon sufficient growth of the working ing and High Temperature Chemical Processes. The authors
lattice. Simple expressions were proposed that relate the sperish to thank S. Sotirchos and Y. Yortsos for stimulating
cific surface area of a multicell fBm porous medium to thatdiscussions on fBm.
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